(az^2)*(0+1*a)=(72361*1*1*z^2*1*1*1*1*0)+72361z^2

Simple and best practice solution for (az^2)*(0+1*a)=(72361*1*1*z^2*1*1*1*1*0)+72361z^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homewor

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (az^2)*(0+1*a)=(72361*1*1*z^2*1*1*1*1*0)+72361z^2 equation:


Simplifying
(az2)(0 + 1a) = (72361 * 1 * 1z2 * 1 * 1 * 1 * 1 * 0) + 72361z2
Remove the zero:
az2(1a) = (72361 * 1 * 1z2 * 1 * 1 * 1 * 1 * 0) + 72361z2

Remove parenthesis around (1a)
az2 * 1a = (72361 * 1 * 1z2 * 1 * 1 * 1 * 1 * 0) + 72361z2

Reorder the terms for easier multiplication:
1az2 * a = (72361 * 1 * 1z2 * 1 * 1 * 1 * 1 * 0) + 72361z2

Multiply az2 * a
1a2z2 = (72361 * 1 * 1z2 * 1 * 1 * 1 * 1 * 0) + 72361z2

Reorder the terms for easier multiplication:
1a2z2 = (72361 * 1 * 1 * 1 * 1 * 1 * 1 * 0z2) + 72361z2

Multiply 72361 * 1
1a2z2 = (72361 * 1 * 1 * 1 * 1 * 1 * 0z2) + 72361z2

Multiply 72361 * 1
1a2z2 = (72361 * 1 * 1 * 1 * 1 * 0z2) + 72361z2

Multiply 72361 * 1
1a2z2 = (72361 * 1 * 1 * 1 * 0z2) + 72361z2

Multiply 72361 * 1
1a2z2 = (72361 * 1 * 1 * 0z2) + 72361z2

Multiply 72361 * 1
1a2z2 = (72361 * 1 * 0z2) + 72361z2

Multiply 72361 * 1
1a2z2 = (72361 * 0z2) + 72361z2

Multiply 72361 * 0
1a2z2 = (0z2) + 72361z2

Anything times zero is zero.
1a2z2 = (0z2) + 72361z2
1a2z2 = 0 + 72361z2
Remove the zero:
1a2z2 = 72361z2

Solving
1a2z2 = 72361z2

Solving for variable 'a'.

Move all terms containing a to the left, all other terms to the right.

Divide each side by '1z2'.
a2 = 72361

Simplifying
a2 = 72361

Take the square root of each side:
a = {-269, 269}

See similar equations:

| 3(8-w)-9=5w-5(3w-6) | | 9d+2d-9-5d=0 | | (2a+3b)(5c-d)=0 | | 1=5p+3-4p | | 7x^2+19x+5=0 | | 5x+8-6x=6 | | az+s=sz-a | | 72=-8(-6-3z) | | 2.7x-1.9=3.5 | | 4.4x+3.6=16.8 | | x+y+z=1+x+y+z-2c+c-c+c-c+c-c+c | | xz+y=yz+x | | -7(x+6)-45=2-40 | | x-a+b=a-b+x | | 0=(b-8)(b-8)+(b^2)-1600 | | x-a+b=a-b-x | | 2(y+4)=24 | | 5x/3+1=3x/6 | | 2(y+2)-3=13 | | 1234ak-ak(k^0)-0=1233k | | x^2-9x-5x=-6 | | 1234ak-(k^0)=1233k | | 2x^3+8x^2+2x+18= | | 1234ak-(a^0)=1233a | | 1234ak-a^0=1233a | | 15w^2+4w-4=0 | | 1234ak-8a^0=1233ak | | 1+(ab-5a)5-b^2= | | 1+(ab-5a)5b^2= | | 2x+2=12-3x | | 222a+1=222 | | 5xy+8x=2-9y |

Equations solver categories